Electron heating by waves in the ion-cyclotron frequency range
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The interaction between waves in the ion-cyclotron frequency range and a hot-electron ring is
studied. The configuration is approximated by a slab geometry in which the hot-electron ring is a
few Larmor radii thick, the confining magnetic field is uniform, and the hot-electron distribution
function is anisotropic. The wave vector of the incident wave is nearly perpendicular to the
magnetic field with a small parallel component, so that both parallel streaming and finite Larmor
radius effects are present. It is shown that a significant part of the energy flux may be absorbed by
the electrons in a single pass of the wave through the ring. This process may be responsible for the
electron ring heating observed in the Elmo Bumpy Torus-S [Nucl. Fusion 23, 49 (1983}] recently.
Numerical results of energy absorption and wave transmission are presented for a wide range of
parameters. For two special cases, the Born approximation and finite Larmor radius expansions
enable us to simplify the analysis. The energy absorption calculated under the approximations is

compared with the more exact treatment.

I. INTRODUCTION

In several experiments, externally produced waves on
the order of the ion-cyclotron frequency propagate through
hot-electron rings. In the presence of these waves, an in-
crease of stored energy in the rings has recently been ob-
served in the Elmo Bumpy Torus (EBT) experiment.' The
purpose of this paper is to investigate one possible mecha-
nism for this phenomenon of nonresonant heating of an an-
isotropic hot-electron ring by low-frequency waves. We exa-
mine the phenomenon by studying a simplified model
problem. Viewing the ring as a hollow thin cylinder, we ap-
proximate the cylindrical surface as a plane, employ a rec-
tangular geometry, and allow the equilibrium quantities to
vary only along the x direction, which is perpendicular to
this plane. The magnetic field is assumed to be uniform and
to lie in the z direction. The equilibrium distribution func-
tion of the ring electrons is anisotropic and non-Maxwellian
and is a function of the nonrelativistic constants of motion in
the uniform magnetic field. The wave propagates mainly in
the x direction and its wave vector has small y and z compo-
nents. Both parallel streaming and finite Larmor radius ef-
fects are present in our configuration. We show that a con-
siderable amount of the wave energy flux may be absorbed
by the hot electrons during a single pass of the wave through
the ring. This is one possible mechanism for the aforemen-
tioned observed heating of the electron rings. In the real
device, precessional resonances and bounce-averaged mo-
tion may modify the mechanism we describe.

The interaction of the wave and the electrons is de-
scribed within the framework of the Maxwell and Vlasov
equations. We solve the scattering problem by constructing a
solution composed of a given incoming wave, a reflected
wave, and a transmitted wave. The rate of absorption is de-
termined from the Poynting theorem.

The electron current is the first moment of the per-
turbed electron distribution function. The perturbed elec-
tron distribution function satisfies the linearized Vlasov
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equation, which is solved under the assumption that the
wave frequency @ is much smaller than the electron-cyclo-
tron frequency £2. The resulting perturbed hot-electron cur-
rent is mainly in the y direction, nearly perpendicular to both
the magnetic field and the wave vector. Consequently, an
integrodifferential equation for the electromagnetic X-mode
wave is derived. We write an integral equation which is equi-
valent to the integrodifferential equation. The integral equa-
tion is solved by approximating it as a set of coupled algebra-
ic equations.

Two regimes of parameters allow us to find approxi-
mate solutions. First, when the electron density is small, the
Born approximation® is applied and an expression for the
rate of absorption is derived. The Born approximation is
based on the assumption that there is only a small change in
the wave field because of its interaction with the hot elec-
trons. Second, when the Larmor radius of the ring electrons
is small relative to both the wavelength of the wave and the
thickness of the slab, the expression for the current is simpli-
fied through a finite Larmor radius expansion. The integro-
differential equation becomes a second-order ordinary dif-
ferential equation which is also solved numerically.

In Sec. IT we solve the linearized Vlasov equation for the
low-frequency regime and derive an expression for the cur-
rent of the hot anisotropic electron ring. An integrodifferen-
tial equation for the wave electric field is obtained by substi-
tuting the expression for the current into Maxwell equations.
Results of the Born approximation and the finite Larmor
radius expansion are given in Sec. III and IV, respectively.
Section V contains the solution of the general case. Results of
the full solution are presented in Sec. VI and compared with
the results obtained by the use of the two aforementioned
approximations. We conclude in Sec. VII with suggestions
for improving the model.

Il. THE MODEL

In the model we employ, a constant equilibrium mag-
netic field B = B¢, is present. The anisotropic equilibrium
distribution function G is a function of the constants of mo-
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tion, the energy ¢, and the canonical momentum p, divided
by the electron mass:

e=(vv)/2, p,=v, —x02, 2=eBy/mc, (1)

where v is the electron velocity, e and m are the electron
charge and mass magnitudes, and ¢ is the velocity of light in
vacuum. Here G depends on x via p,. The electric and mag-
netic wave fields have the form

E = E(x)ei(k,v + kz — ot |’ B = B(X)ei(k’y + kz— wt ). (2)

The wave propagates mainly in the x direction. We Fourier-
decompose the field with respect to the coordinates y and z
only. The Vlasov equation, linearized about the given equi-

librium, is
JF aF dF
(v a)
Ix v, av,
= S=(e/m){v.[E.G. —(B./c)G, | +,E,G,
+v,[E.G. +(B,/0)G, ]| +EG,}, 3)
where the perturbed distribution function has the form
filry,t) = Fxv)e™ ™ 5=, 4)

Here G, and G, arethe partial derivatives of G with respect
to p, and €. The characteristics of Eq. (3) are

itk,v, + kv, —@)F +v, —

v, =2 cos 2t — v sin £2¢,
v, =03 sin £2¢ + v) cos £2t,
x=v,/02— /2 + x°,

so that Eq. (3) is

JF

t(a)+ Uy+kU)F+—-é——S(t)

The unique periodic solution of (3) is
e— 2@+ @)

t 4t
_ ' it '
F= e~ PO _ o—i®l) J: dt’e S(t’),
where
ty=2m/12,

D(t)=(—+ k,v,)t — kv, (£)/2.

More explicitly, we have

F(t)={exp[2mi{ — o + k,v,}/2] — 1}~
xfodt'S(t+t')exp{i( -+ k)t

— (k, /) [v (et +2') — v, (2)]}s (3)
where S, the inhomogeneous part of Eq. (3), is calculated
along the characteristics

v (t+ ) =v,{t)cos 2t' —v,(t)sin 2¢',

v,(t+t')=v.(t)sin£2¢' + v, (t)cos 2¢’, (6)

x(t+ 1) = (1/2)[v,(t +1') = p, (t)]-

Since we are dealing with the interaction of electrons
with ion-cyclotron frequency waves, » is much smaller than
£2. Furthermore, the wave vector of the incident wave is
nearly parallel to the x direction so that kv, and k,v, are
also much smaller than 2. Thus, one can approximate (5)
and write
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21n(—w+kv)fdt S+, g

Finite Larmor radius effects which have been neglected in
they and z directions are not neglected in the x direction, the
approximate direction of the wave propagation. In addition,
the anisotropy in the distribution function may introduce a
strong x dependence to the wave. Nevertheless, in the EBT-S
experiment the wave may have a relatively high poloidal k
component (K, in our model). The treatment could be modi-
fied to deal with such a case. Let us consider one term that
appears in (7) which comes from the terms proportional to v,
in the definition of S [see (3)],

’=Jt°df’ 0.t + 1) E, [x(t + )]G,

—(1/¢)B, [x(t + )]G, }. (8)
Since x(¢ + ¢°) is a function of v, (¢ + ¢ ) only and
O (t+1t')=v cost”, v t+¢t')=v, sin2t", (9)

we see that 7 is proportional to f&dt” cos £2¢ "f(sin 2t "),
which is zero. Thus, we may drop these terms in (3) and (7).

For simplicity, we assume that E,, the component of
the electric field parallel to B, is zero. The term o, in the
cold plasma conductivity tensor associated with the back-
ground cold electrons is so large that £, must be very small.?
Provided the density of the hot electrons is small relative to
that of the cold, we may neglect E,, restricting ourselves to
the extraordinary mode. Thus (7) reduces to the following
expression for the distribution function:

Q J"° e
-— ¥ |t wEG.
27i( — @ + k,v,) Jo m{y e

+ [v.(B./¢) + E, ]G, }. (10)

The Maxwell equations and the assumption that E, is zero
yield

B, = —(k,c/0)E,, (11)
so that F becomes
n

mm fd’ b,(t +1')E, (t + 1)

J‘dt E(t+1¢'). (12)
217'1(0 m
We may calculate the perturbed currents as first moments of
F given by (12). Since v, (¢ + ¢ ') and x(¢ + ¢ '} are functions of
v,(t) and (v2 + v})(t), J, vanishes after the v, integration.
We now specify the distribution function. For simpli-
city and to permit relatively explicit analysis, we choose the
specific equilibrium distribution function

G = K exp( — A€ — up}), (13)
from which the density follows by integrating over v:
2 3 172
n{x) = ng exp( _ _pA0” x2), ng=K (—#)—-—) .
24 4+ p) A4 +u)

We may then introduce the thermal velocity v,,, Larmor
radius 7, and effective ring thickness d as

Amnon Fruchtman 2189

Downloaded 06 Apr 2005 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



vy, = /AN r=v,/02, d=[2A+p)/pi2?1"2
(15)
The current is defined as
J,= —el|dvy,F. (16)

We start with the v, integration. Integrating the first term of
F, we obtain

[ o, =

( —o+ kzvz)
o d 2
= P.V.[f b exp( e )]
—w |k |0, —vp) Vi

+ (in/ |k, |) exp( — v3 /02 = 72Z (vy /vy )/ |k, |.

Here Z is the plasma dispersion function and vy isw/k,. Use
has been made of the fact that Im @ > 0. The current J, be-

comes
vB (-] <0
VA (——) f J- dv,dv, v, g,
Ui —ew J—w

xf’d:' b,(t +t)E, [x(t + )]
0

_ T

* T 7 2mmilk, |

2 o0 -3
e V7 vy, J f dv, dv,v,8,

2mmie
x [Car’ B, s+ ), 17)
0

where G = g exp( — v2/v%).

In order to simplify the expression for J, we apply
successive changes of variables. First we use cylindrical co-
ordinates in velocity space. In the (v,,v,) plane, v,(2) is
v cos fand v ,(t + t')isv cos . The integration of ¢’ becomes
an integration on @. At this stage x(t + ¢ ') is

ﬂsm(¢ sz t")sin(‘z - 9). (18)

x(t+t)=x(t)— 3

The next change of variables is as follows:
p=¢—8, =0 +¢)/2, (19)

b,=vsin 0, ¥,=vcosb. 20)

In these new variables,

x(t+t')=x — [20, sin(¢ /2)]/22, (21)
which does not depend on #,. The substitution

x'=(20, sina)/2, a=4¢/2, (22)

leaves x'as the only variable of integration on which the un-
known quantity E, depends. Upon performing the integra-
tion, we find that the current is
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2 1/2
Jx)= — iﬁp_(ﬂ) s
(1)}

2
1/2
Py - (1+5) exp( )

d2

% f" da
sin a(1 + s cos? a)*/2

f dx’ exp( — BYE, (x — x')

28 (x'/2 —x) cos*a
[Um ( )cos + " (1+scos’a)

2’2 (1 + 5 cos? a))
_ s(cos2 at 2 2 (x'/2 — x)(x'/2 + sx cos® a))]
r {1+ scos?a)
: (23)
Here s=p/A=r/[d>—7r), o =4mne*/m, B=(x'
—x£)/8, 8=2rsing[(l +scos’a)/(1+5)}'%, and ¢

= 2ssin” a/(1 + s). We then proceed to substitute this cur-
rent into Maxwell’s equations.
Maxwell’s equations in our case become

= (w/c)(€,E, + i€,E,),
(24)
d’E,

klE, — ———dx;
where we have used the assumptions E, =0, k, = 0, and J,
= 0. Here, J,, is the current from the hot electrons given in
(23), and €, and ¢, are the diagonal elements of the cold plas-
ma dielectric tensor.* The first of the equations (24) enables
us to write E, as a function of E£,. We assume that £2 and @,
(the electron plasma frequency) are of the same order of mag-
nitude. Since @ is much smaller than both £2 and w,, (the ion

plasma frequency),

€,=0%/(2? — &),

( )(—162E +€E,)+ 22 4’”‘" 2,

(25)
6= —(0/0)[0}/(2} - %],

where £2; is the ion-cyclotron frequency. Thus Egs. (24) and
(25) become

d2 .
> K%, = - —4’:;“’ J,=D(x) (26)
e 2 Dy _k2~“’_2“’_'2"'

n?c TR

Before we continue with the solution of this general
case, we consider separately two approximations: the Born
approximation and a finite Larmor radius expansion.

Ill. THE BORN APPROXIMATION

The Born approximation® relies upon the assumption
that there is only a small change in the radiation fields be-
cause of their interaction with the electron ring. This allows
one to use perturbation methods in order to find the fields.
To lowest order, the wave fields in the expressions for the
currents are assumed to be the given incident wave fields.
One can substitute the calculated currents into the Maxwell
equations and solve for the higher-order fields. Being inter-
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ested mainly in the calculation of the heating, we use a slight-
ly different procedure. We do calculate the currents by as-
suming that the wave fields are the incident wave fields. The
rate of heating, which is Re{E*-J), is found by using the inci-
dent wave field for E and the approximate current for J. We
do not solve the Maxwell equations for the higher-order
fields, since this is not necessary for the lowest-order heating
calculation.
The incident wave is of the form

E=2e @)

For our convenience, we use Eq. (17) for the current. Substi-
tuting expression (27) for E, we obtain the rate of absorption

Re(E?J,)
2 oo o
— ﬂlm[z (.EB_.)]J f dvx dvy U, 8e
2mwlk, | Vg, —od-w
o
xe ™ "? f dt’ v cos 2t 'e* M/ Dottt (28)
(]

where one term vanished because of the ¢’ integration. We
change now to cylindrical coordinates, so that dv, dv,
= v dv d¢ and v, = v cos ¢. Using the identities

2
J‘ e‘”"’"cosad0=i%r-ll(z), J(—2)= —Jy2),

(4
and the explicit form of the Z function, we find that the total
absorption is

P= f dx Re(E2J,)
2

= 2 p expl— [ g £ ¢ T
@ 0

= (w3 d /w)p exp( — p*)(kr)*/4 \F\[3 .2, — (kr?].(29)

Here J, and ,F, are the Bessel function and the confluent
hypergeometric function,® respectively, and p=v; /v,,,. We
divide Pby the energy flux expressed by the magnitude of the
Poynting vector

N = (kc*/4nw)|Ep|? (30)
to obtain the relative absorption
Py = (@} /P dk Pp exp( — p*)iFy[3,2, — (kr)*]. (31)

If we define the total mass as n, = §= _ dx n{x) = nymr'/?d,
expression {31) shows that the absorption does not depend on
the slab thickness d, but on the total mass only.

The absorption originates from both parallel streaming
and finite Larmor radius effects. The maximum absorption

occurs when p = 1/42, that is, when w/k, is close to the
thermal velocity of the electrons. When p is much larger or
smaller than one the absorption disappears. Clearly the ab-
sorption results from the interaction of the wave having a
component of propagation parallel to the magnetic field with
the hot electrons that have a velocity equal to vg. This ab-
sorption, which is a Landau-damping type, is highest when
the velocity of the resonant electrons is the thermal velocity.
The anisotropy of the ring does not seem to affect the absorp-
tion, at least not in the Born approximation.

When kr<1 one can approximate ,F, as
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Fi[3.2 — (krP] = 1. (32)
Thus
Pr = (@2 /c*\m dk rp exp( — p?). (33)

IV. FINITE LARMOR RADIUS (FLR) EXPANSIONS

The assumption upon which this expansion relies is that
the Larmor radius 7 is much smaller than other lengths in the
system, including (27/k } and d. One can expand the inte-
grands in expression {23) for the current and perform the
integrations. The zeroth-order and the first-order terms of
the expansion in r vanish on the integration on a or #. The
second-order term is the lowest-order term which has a finite
contribution. The current in this approximation is

iw? P2 x2 d’E x dE
e B e 52)
) AT @ xp d? PZ(p) dx? + d? dx
(-2 52
Sy (o), x 45 34
+ d? d? d? dx (34)

Substituting this expression for the current in Eq. (26}, one
obtains a second-order ordinary differential equation for E,,:

d*E
dxzy +k’E,
(02 x2 dzE X dE
= 2 e~ 2ozt (G + =2
E, sz) x dE ]
—tl - = odpni A8 I 35
+ dz( d? + d? dx 33)

This equation can be solved with an appropriate set of
boundary conditions. The physical problem we wish to solve
is the scattering problem, for which the asymptotic bound-
ary conditions are
E(x)=¢* 4+ Re ™, x— — o,
(36)
E

¥
Defining E (x) = (1/T)E, (x)e ~ **, we obtain from Eq. (35) a
second-order ordinary differential equation for  (x) with the
boundary conditions
dE(x) _ 0,
dx

This equation can be solved numerically. The asymptotic
solution is

E(x)=1/T+ (R/T)e~***, x—> — o, (38)

which is an oscillatory solution of average amplitude 1/|T |
and an oscillation amplitude |R |/| T |. The constants Tand R
may be found once the solution {38) has been plotted. Apply-
ing the Poynting theorem, we have for the rate of absorption

Pe=1—|R|*—|TJ (39)

In Sec. VI, numerical solutions of Eq. (35) are presented
and compared with the solutions of the general equation.

x) = Te™, x—c.

Exj=1, X—»c0. (37)

V. THE GENERAL SOLUTION

Equation (26) together with expression (23) for J, is an
integrodifferential equation for E,. The general solution of
this Helmholtz equation is
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E, =Ae** + Be~ ™ 4 f dx' G (xx)D(x),  (40)

where G (x,x’) is the one-dimensional Green function
G (x,x') = e*1*~~1/(2ik). (41)

Since we are looking for a solution for the scattering problem
of the form (36), where there is no incident wave coming
from infinity, we choose 4 = 1 and B = 0 in Eq. (40).

The source function D depends on E,, that is, Eq. (40) is
an integral equation. This is an inhomogeneous Fredholm
equation of the second type. It can be rewritten in the form

E,(x) = ™ 4 f " dx K (x¥)E, ), (42)

where the kernel is

Kpex)= — ( c2) t +S)”2f dé G (x.£)

g7
dy
o (1— 2)<1+sy2>3/2
_ €—x)  s&+x)
Xexp[ ((1—y) * (1+sy2>)]
> i(g+x’)2y4
X[pz(p)(y top (1 + 57

_E-x) ;x') (1 +sy2))

—s(y2 + (g +Xx )(5 x — ngyz))] (43)
221 + %)

Each term in this kernel is a double integral. The integrand is
singularaty = 1 and behaves as (1 — )~ /2. A standard rou-
tine which overcomes such singularities at the end points
was employed. Since the derivative of the Green function is
discontinuous, the infinite regime was divided into two
parts. The integral on the semi-infinite regimes was found by
applying the Gauss-Laguerre method. When the param-
eters were such that an integral over an infinite regime was
required, the Gauss—Hermite method was used.

Equation (42) is solved by approximating it as a set of
coupled linear algebraic equations. The part of the x axis,
where the kernel is not too small, is split into N ( = 40) inter-
vals of equal lengths. Denoting their limits as x; and substi-
tuting E = E, ™", Eq. (42) becomes

Ex)=1 +Ax§: exp[ik (x; — x;)]1K (x;,x;)E (x;),

j=L.,N, Ax=x;,, —x;. (44)
For large values of j, | E (x;)|* = | T'|?, and for small values of
J» |E(x;) —1}>=|R |>. Again, by applying the Poynting

theorem, Py can be found [Eq. {39)].

In the next section numerical solutions of Eq. (44) are
presented and compared with the results of the aforemen-
tioned approximation methods.

VI. NUMERICAL EXAMPLES

We present three examples. The first shows the absorp-
tion in a parameter regime where the Born approximation is
valid. The second demonstrates the validity of the small Lar-

2192 Phys. Fluids, Vol. 28, No. 7, July 1985
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0.02r

0.4 0.8 1.2 1.6 2.0 2.4
kx

FIG. 1. The function (kr/2), F,[3, 2, — (kr*] vs kr [curve (a)); r = 0.3 cm,
d = 10r. The parabola [curve (b)] is (kr/2)* and the dots are the results of the
exact equation. The electron density was changed in order to keep the ab-
sorption rate small, while solving the exact equation. In the regime of small
absorption but high values of kr (R 0.4), the FLR expansion fails and the
Born approximation is valid.

mor radius expansion for a different regime of parameters.
In the last example we study a case where both approxima-
tions fail and the correct amount of absorption is found only
by solving the general equation.

In all the cases we treat, the reflection coefficient is
much smaller than the transmission coefficient so that the
rate of absorption is practically a function of the transmis-
sion coefficient. We do not give the small reflection coeffi-
cient which is on the order of one percent.

In Fig. 1 the function (kr/2)* \F,[3,2, — (kr)] is plot-
ted versus kr [curve (a)]. This function, multiplied by
(w2 /c?)r d (4/k )p exp( — p?), gives the relative absorption,
according to the Born approximation [see Eq. (31)]. The dots
in this figure express the relative absorption calculated by
the results of the exact equation (44) and divided by the fac-
tor (w?/c*)r d (4/k )p exp( — p?). The Larmor radius ris 0.3
cm and the slab thickness d is ten times larger. In solving this
equation w} was given different values for different values of

1.00

0.80

0.60

Pa

0.20

[¢] | 2 3 4 S 6 7 8
e x 1072 (cm™®)

FIG. 2. The relative absorption P, versus the electron density ng; » = 0.15
cm, d = 207, 27r/k = 100r. Curves (a) and (b) show the results of the FLR
expansion and the Born approximation, respectively, while the dots are the
results obtained by solving the exact equation. Here the FLR expansion is
valid, while the Born approximation fails for densities higher than
1x102 cm—3.
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FIG. 3. The relative absorption Py versus the Larmor radius 7. The param-
eters ared = 1 cm, n, = 5% 10" cm ™3, 27/k = 30 cm. (a} FLR expansion,
(b) the Born approximation, and (c) the solution of the exact equation. For
large » both approximations fail.

krin a way that the absorption was kept less than 5%. As can
be seen in the figure, the relative absorptions calculated by
the Born approximation and by the solution of the exact
equation are the same. This shows the validity of the Born
approximation in the case where the absorption is small (less
than 5% in our example). As expected, the values of k7 do
not affect the validity of the Born approximation as long as
the absorption is small. Curve (b} in Fig. 1 shows results
obtained by the finite Larmor radius expansion method. We
see that for kr £ 0.4 the FLR expansion yields correct results
but for higher kr values this method fails.

In Fig. 2, d is 20 times larger thanrand A (= 2#/k)is
100 times larger than r. This parameter regime is suitable for
the application of the finite Larmor radius expansion meth-
od. Curve (a) shows the relative absorption found through
the FLR expansion [Eq. (35)] versus the density n, of the hot
electrons. The dots are the solutions of the exact equation
[Eq. (44)]. The agreement between the solutions of the two
equations proves the validity of the finite Larmor radius ex-
pansion method in this case. When the Larmor radius is
small relative to other lengths in the system, the FLR expan-
sion method is valid for all densities. Curve (b) shows the
absorption calculated by the Born approximation [expres-
sion (31)]. For densities higher than 1 10'> cm ™2 the Born
approximation fails in this case. The Born approximation is
correct only when the relative absorption is small enough.

Figure 3 shows the relative absorption versus the Lar-
mor radius r. Curve (a) shows the results of the finite Larmor
radius expansion [Eq. (35)], curve (b) those of the Born ap-
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proximation [Eq. (31)], and curve (c) the results of solving the
exact equation (44). The slab thickness dis 1 cm, A4 is 30 cm,
and the electron density n,is 5 X 10'! cm 2. This is an exam-
ple for a parameter regime where none of the approxima-
tions is correct. When  is larger than 0.1 cm, it is not small
enough relative to d, and the FLR expansion fails. When r is
about 0.4 cm, the relative absorption is too large (nearly
10%), and the Born approximation fails. Then only the solu-
tion of the exact equation gives the correct amount of ab-
sorption.

The experimental parameters in the EBT-S experi-
ment’ probably fit roughly the case of » = 0.5 cm in Fig. 3.

Vii. CONCLUSIONS

The results presented here suggest that nonresonant
heating of electrons by a low-frequency radiation may be
substantial. We chose an approximate model in order to sim-
plify the analysis. Future studies may analyze a more realis-
tic model in order to get more accurate results.

The form of the magnetic field can include spatial gradi-
ents which are present in fusion devices. The finite poloidal
dimension introduces finite k£, component to the wave vec-
tor. Furthermore the slab model may be modified to repre-
sent a more realistic geometry. The wave electric field com-
ponent parallel to the magnetic field may be comparable to
the perpendicular component when the fraction of the hot
electrons is not small. These nonvanishing k, and E, couple
the various components of the wave fields and may even
enhance the heating. Thus a relativistic model of the hot
electrons can be used to explore additional effects that the
present nonrelativistic model could not deal with.
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